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Current interest in organic reactions in superheated water is
motivated by a surprising diversity of applications: geochemical
production of petroleum, biology in hydrothermal vents, corrosion (@)
in steam generators, destruction of hazardous waste, and the R
development of environmentally benign chemical processes.

There is relatively little information on the kinetics and mech-
anisms of chemical reactions under hydrothermal conditions, and
most studies have relied on end-product analysis and modeling to
infer multistep reaction sequences. Ideally, reaction intermediates
should be studied in real time in situ. In practice, most techniques
are limited by the technical demands of the harsh environment
a corrosive solvent under high pressure at high temperature
(hydrothermal chemistry is important up to and through the critical
point of water, at 374C, 220 bar). The study of free radicals is
particularly difficult under such conditions. One approach is to use
pulse radiolysis with optical spectroscopy. A remarkable new
development is the use of direct sampling mass spectrometry to
identify radicals and other reaction intermedidtes. — TP

Our own work employstSR, a magnetic resonance technique 0 25 50 75 100 125 150 175 200
that uses the muon as a spin préligecause a positive muon can Frequency / MHz
act as the nucleus of a hydrogen-like atom, muonium (Mu), it can Figure 1. Muon precession signals from aqueous solutions of acetone at
be used to study H atom reactions and free radicals incorporating(a) 370°C, 250 bar, 2 kG; (b) 170C, 190 bar, 320 G. In each case, the
H. In recent years, we have demonstrated the ability to detect pair of peaks labeled R is characteristic of a muoniated free radical.

muonium in water over a wide range of conditions, from standard gqjyent properties for different concentrations of acetda@he

to supercriticaf, to determine rate constants for its reactfoasd positive temperature dependence has been interpreted in terms of

to detect muoniated free radicafsThe work described here  hindered internal rotation about the-© bond in (CH)>,COMu,
involves radicals formed from the reaction of muonium with acetone ith a minimum-energy conformation in which the-®u bond

Fourier Power

R

in water. is very close to the nodal plane of the p orbital containing the
In water at room temperature, H atoms react with acetone by ynpaired electrof?
both H abstraction and addition to the carbonyl oxygefbstrac- Above 250°C, a different radical was detected: its muon hfc is

tion is slower for Mu atoms, so the predominant product is the apout 250 MHz and falls with temperature. This is typical behavior
2-muoxyprop-2-yl radical (Ck,COMu!? However, we found  for a f-muoniated alkyl radical* and we assign the spectrum to
evidence for a different radical in aqueous solutions of acetone at CHyC(OH)CH,Mu. This is the expected product from Mu addition
high temperature, which led to the systematic study reported here.to the enol form of acetone, as shown in Scheme 1. Unambiguous
Transverse fieldiSR experiments were carried out at the M9  dentification would require measurement of the proton hfc’s, in
beam line of the TRIUMF cyclotron facility in Vancouver, Canada. principle obtainable by muon avoided level-crossing resonance, but
Oxygen-free samples of 0.08, 0.29, and 0.69 mol fraction acetonewe currently lack the equipment to perform such experiments on a
in water were investigated; experimental details of the equipment sample in a high-pressure cell.
and procedures can be found elsewHéraSR spectra were The existence of keteenol tautomerism is well known, but
recorded over a wide range of temperatures, from 58 to°€20 despite the extensive literature on edblbere is very little data
Two examples of the spectra are given in Figure 1. The existenceon the temperature coefficient of the equilibrium constant. Rate
of muoniated free radicals is evident from the characteristic pair constants for enolization of acetone in water and the reverse process
of muon spin precession frequencies (labeled R) in each speétrum. have been determined up to 3@; combination of the activation
The sum of these frequencies gives the muon-electron hyperfineparameters givesAH®> = 10.31 &+ 0.45 kcal mot! for the
constant (hfc}3 and it is obvious that two different radicals are  equilibrium2® This leads to the prediction thaKp falls from 8.33
formed at the two temperatures. at 25°C to 4.70 at 300°C. On the other hand, non-Arrhenius
The muon hfc’s are plotted in Figure 2, which shows a dramatic kinetics seem to be a common feature of hydrothermal systems,
change at about 25%C. Below this temperature, our results are so a large extrapolation of the equilibrium constant according to
consistent with literature dat& denoted by the open symbols. The the van't Hoff equation seems hardly credible. Water itself exhibits
small shift between the data sets is consistent with changes inmarkedly nonlinear behavior, with a maximum kg, close to
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280 kc[E] = 10 s, Because the upper limit for Mu rate constants is
10" M~1 5719 we deduce that the enol concentration was greater
than 0.1 M.

260 - Our finding of large concentrations of enol under hydrothermal

conditions is consistent with rapid and almost completeCH
exchange reported for the positions of ketones in superheated

waterl?
240 -
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Supporting Information Available: Table of muon hyperfine
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